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We will use the symbols 
– ε for emission coefficient, representing the fraction of emitted energy for non-black 

surfaces compared to the emitted energy of black surfaces.  For black surfaces ε =1 
and the energy emitted by a black surface is θ = σT^4. (Stefan-Boltzmann relation).  

– α for absorption coefficient, representing the fraction of energy absorbed as compared to
total energy arriving at the surface.  

– ρ for reflection coefficient, representing the fraction of energy reflected as compared to 
total energy arriving at the surface. 

– τ for transmission coefficient, representing the fraction of energy transmitted through the
body behind a surface as compared to the energy arriving at the surface.

From the definitions of  α, τ , ρ  it follows:  

                                               α+τ +ρ =1 .                                                                                (1)
 
Consider surfaces 1 and 2, with temperatures T1 and T2, black-surface radiations  θ1 and θ2 ,
Emission coefficients (ε1, ε2),  Absorption coefficients (α1, α2) , Reflection coefficients (ρ1, ρ2)
and Transmission coefficients (τ1,τ2 ).

We follow in Table 1 the history of an emission: 

                                                   EM1 = ε1θ1                                                                                                                   (2)  
            
from surface 1 in the direction of surface 2.

Table 1 
                                                              reflection       absorption      transmitted      transmitted
                                                            from 1 or 2           in 1              through 2        through 1
1       Fraction ρ2  of              ε1 θ1

             is reflected  from 2 to 1                     ρ2 ε1θ1

2       Fraction τ2   of             ε1 θ1

             is transmitted through 2                                                                                            τ2 ε1θ1 

3      Fraction α1 of            ρ2 ε1θ1

         is absorbed at surface 1 :                                                      α1ρ2 ε1θ1

4      Fraction τ1 of            ρ2 ε1θ1

             is transmitted through 1 :                                                                                     τ1ρ2 ε1θ1

5      Fraction ρ1 of            ρ2 ε1θ1

             is reflected  from 1 to 2 :                ρ1ρ2 ε1θ1
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Table 1 continued
Steps 1, 2, 3, 4 and 5 are repeated several times:   
                                                             reflection       absorption      transmitted      transmitted
                                                            from 1 or 2           in 1              through 2        through 1

1bis   Fraction ρ2  of         ρ1ρ2 ε1θ1 

              is reflected  from 2 to 1               ρ2ρ1ρ2 ε1θ1 
2bis   Fraction τ2   of         ρ1ρ2 ε1θ1  

               is transmitted through 2                                                                                 τ2 ρ1ρ2 ε1θ1  

3bis   Fraction α1 of      ρ2ρ1ρ2 ε1θ1 
          is absorbed at surface 1 :                                               α1ρ2ρ1ρ2 ε1θ1

4bis   Fraction τ1 of  ρ2ρ1ρ2 ε1θ1 

              is transmitted through 1 :                                                                                τ1ρ2ρ1ρ2 ε1θ1 

5bis   Fraction ρ1 of  ρ2ρ1ρ2 ε1θ1 

              is reflected  from 1 to 2 :          ρ1ρ2ρ1ρ2 ε1θ1 

                          etc , etc

The total absorption in 1 becomes : α1ρ2 ε1 θ1 (1+  ρ1ρ2 + ( ρ1ρ2 )^2 +   ( ρ1ρ2)^3 + ….)
The terms in parentheses represent geometrical series with ratio  ρ1ρ2 <1 with sum: 1/(1-  ρ1ρ2)
Total Absorption  in 1 : 

                                   AB1 =   α1ρ2 ε1 θ1 /(1-  ρ1ρ2)                                                                  (3)

The transmission through 1 becomes:     τ1ρ2 ε1θ1 (1+  ρ1ρ2 + ( ρ1ρ2 )^2 +   ( ρ1ρ2)^3 + ….)
Total transmission through 1:

                                   TR1 =   τ1ρ2 ε1θ1 /(1-  ρ1ρ2)                                                                    (4)

The transmission through 2 becomes:     τ2 ε1θ1 (1+  ρ1ρ2 + ( ρ1ρ2 )^2 +   ( ρ1ρ2)^3 + ….)
Total transmission through 2:

                                   TR2 = τ2 ε1θ1/(1-  ρ1ρ2)                                                                         (5)

The energy flux q1 from 1 to 2 becomes  from  Emission minus Total  Absorption :EM1-AB1 

                           q1 =  ε1θ1(1- α1ρ2 /(1- ρ1ρ2))                                                                        (6)

By cyclic permutation of the subscripts, the energy flux q2 from 2 to 1: 

                          q2  = ε2 θ2(1- α2ρ1 /(1- ρ1ρ2))                                                                        (7)

The relations (6) and (7) for q1 respectively q2 are valid for arbitrary values of α, τ , ρ  within the 
interval 0 to 1, satisfying the relation (1):  α+τ + ρ=1. The relations do not contain  the transmission 
coefficients τ explicitly, they are however included through the reflection coefficients ρ !

Attention: These relations are only valid for black or gray surfaces, not for selective radiadiation.    
For selective radiators the equation have to be established for each wavelength interval.



Case of two non-transparent plates with τ1 = τ2  = 0

In this case according to relation (1) ρ1 =1- α1   and  ρ2 =1- α2. 

Inserting these values in (6) respectively (7):
             q1  =   ε1α2θ1/(α1+α2 - α1α2)                                                                                     (8)

             q2  =   ε2α1θ2/(α1+α2 - α1α2)                                                                                     (9)     
In case,  1 is black ( ε1 =  α1=1) and  2 is gray and θ1 = θ2  = θ : q1= α2θ  and q2 =  ε2θ .

The temperatures of the surfaces are equal and material behind the surfaces are also isotherm:
consequently no heat flow between 1 and 2: q1 - q2  = 0.

 From which follows  for a gray surface it turns out that α2 = ε2 . 
 Since q1 is independent of θ2  it is also true  for θ1 ≠ θ 2 , from which follows for gray non 
transparent surfaces with τ =0, and  even where α and ε are not equal to 1:  
                                                                                                            α = ε                                                      (10)
This is the Kirchhoff relation  of 1860! 

The net heat flux between surface 1 and 2  becomes :     

                 q1-q2 = (α1α2/(α1+α2-α1α2)) (θ1 - θ2 )                                                                   (11)

With σ1= α1σ,  σ2 =α2σ  and    1/σ12 = 1/σ1+1/σ2 -1/σ    

        q1-q2 = σ12(T1^4 -T2^4)                                                                                                   (12)
       
This is the Christiansen relation
 C Christiansen, Annalen der Physik und Chemie, Leipzig,1883

Application of the Christiansen relation see:
http://www.tech-know-group.com/papers/Prevost_no_back-radiation-v2.pdf

Case of a non-transparent plate (τ1 = 0) and a semi-transparent plate (τ2 > 0).

In this case we get from equation (1):  ρ1 =1- α1   and  ρ2 =1- α2 -τ2 
Inserting these value in (6) respectively (7) we get for the energy fluxes:

             q1  =               ε1θ1(α2 +τ2)/((α1+α2 - α1α2) + τ2(1- α1))                                               (13)

             q2  =   ε2θ2(α1 +τ2 (1- α1)) /((α1+α2 - α1α2) + τ2 (1- α1))                                               (14)

With numerator 1 = n1 = ε1(α2 +τ2)
         numerator 2 = n2 = ε2 (α1 +τ2(1- α1))
         numerator 3 = n3 =  τ2 ε1

     denominator    = d   =  (α1+α2 - α1α2) + τ2 (1- α1)                       

             q1 =  θ1 n1/d                                                                                                               (13a)

             q2 =  θ2 n2/d                                                                                                                (14a)

          TR2  =   θ1 n3/d                                                                                                                (5a)

http://www.tech-know-group.com/papers/Prevost_no_back-radiation-v2.pdf


Figure 1 Various energy fluxes for an emission   EM1 = ε1θ1 ,   τ1 = 0  and   τ2 > 0
  
                                                                                                       d  =  (α1+α2 - α1α2) + τ2 (1- α1) 

                                                        TR2 =  θ1 n3/d                       n3 =  τ2 ε1                                         

  θ2   ──────────────────↑───────────                                                     

                               ↓ q2 = θ2 n2/d                        n2 = ε2 (α1 +τ2 (1- α1))

           ↑q1 =  θ1 n1/d                                                                     n1 = ε1(α2 +τ2)                                

   θ1  ──────────────────────────────

qnet(1into 2)  = q1 -TR2 -q2

In Figure 1 are depicted the various energy fluxes as function of the emission coefficients 
ε1 and ε2 , the absorption coefficients α1 and α2 and the transmission coefficient τ2 .
For τ2 = 0 the transmitted energy trough plate 2 TR2 =0 and q1 and q2 from equations (13) and (15) 
are identical to q1 and q2 from equations (8) and (9). 
The latter equations gave the Kirchhoff relation  ε2 =  α2.

In case  τ2 > 0 , a Kirchhoff type of relation relation follows from q1-TR2 = q2 ,

We compare the numerators of the terms and find a relation between ε1/α1 and ε2 /α2 :

       n1 – n2 = n3     or      ε2 /α2 = ε1/α1 (α1/(α1+ τ2 (1- α1 ))                                             (15)

This is the modification of the Kirchhoff relation for the case that surface 1 is non-transparent and 
surface 2 is semi-transparent with transmission coefficients τ1 = 0  respectively  τ2 > 0. 
In case surface 1 is black  we find  ε1 = α1 =1 and  ε2/α2 =1.
In case surface 2 is non-transparent (τ2 = 0) we find  ε2/α2 = ε1/α1 =1.
Introducing   (15) into the equations 13 and 14 we find for qnet the non-transparent plate 1 
and the semi-tranparent plate 2:

qnet(1into 2) =   ε1α2 /(α1+α2 - α1α2 + τ2 (1- α1)) ( θ1 -θ2 )                                                       (16a)

or equivalently due to the modified Kirchhoff  relation (15)

qnet(1into 2) =   ε2(α1+τ2 (1- α1)) /(α1+α2 - α1α2 + τ2 (1- α1)) ( θ1 -θ2 )                                    (16b)

For  τ2 = 0  both equations reduce to the Christansen relation (12): 

qnet(1 into 2) = q1-q2 = α12 ( θ1 -θ2 )   with    1/α12  = 1/ α1 +1/α2  -1                                        (12bis)

or equivalently

 q1-q2 = σ12(T1^4 -T2^4)   with  σ1= α1σ,  σ2 =α2σ  and 1/σ12 = 1/σ1+1/σ2 -1/σ                       (12bis)

Attention: Above equations are valid for black and gray surfaces. 
For selective radiators the equations have to be established for each wavelength interval.


